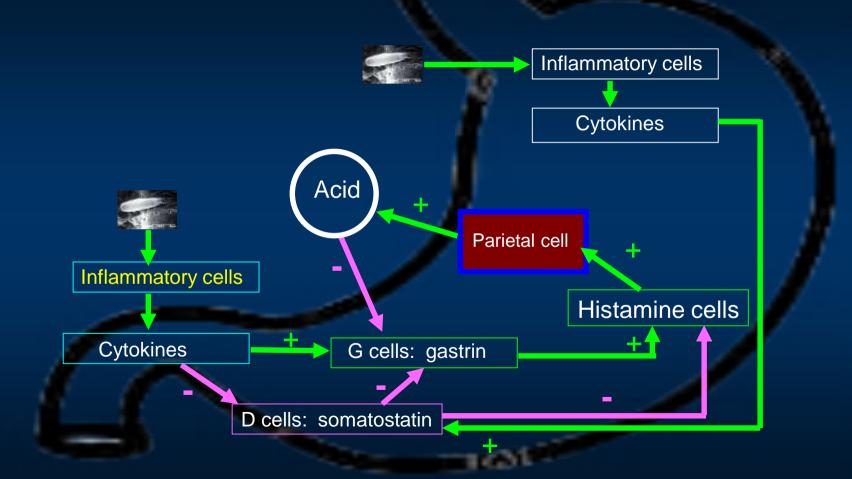
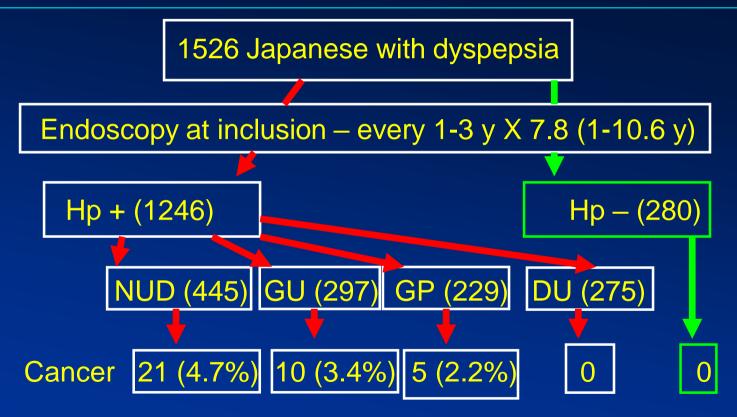

Diagnosis and treatment of *H. pylori* infection

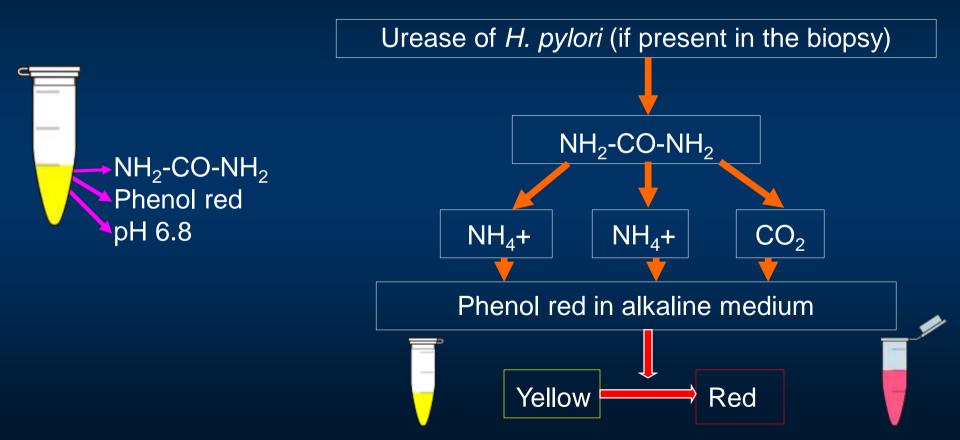
Prof. Uday C Ghoshal MD, DNB, DM, FACG, RFF, FAMS, FRCP (Edin), MISG Professor and Head, Dept. of Gastroenterology, SGPGI, Lucknow, India President, Indian Motility & Functional Diseases Association Former Editor-in-Chief, Indian J Gastroenterol www.spreadhealth.in, www.sgpgi.edu.in


Outline of presentation

- Outline of pathogenesis of *H. pylori* infection
- In whom diagnostic work-up and treatment for *H. pylori* infection needs to be undertaken?
- What are the tests for *H. pylori* infection?
- How to treat *H. pylori* infection?
- Adverse effects, compliance, eradication rates and how to improve it?
- Re-infection


Outline of the pathogenesis

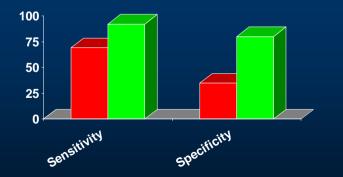
Outline of gastric physiology in *H. pylori* infection



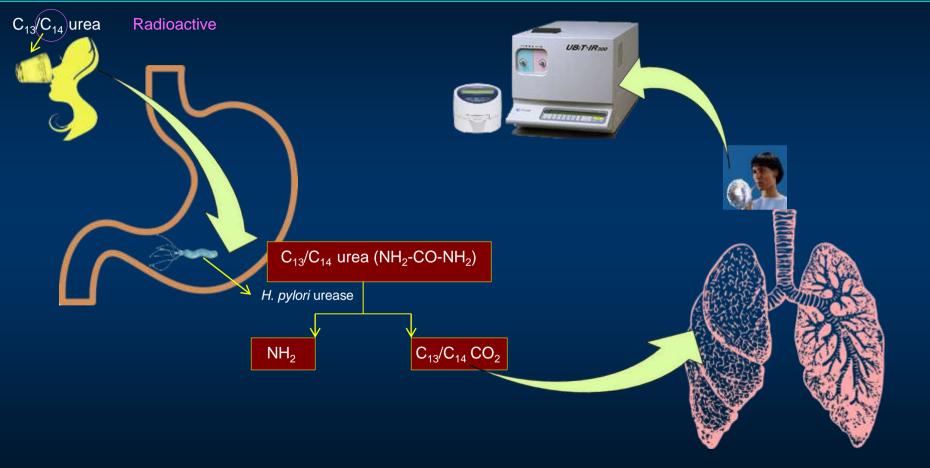
H. Pylori and gastric cancer

Uemura N. NEJM 2001; 345: 784-9

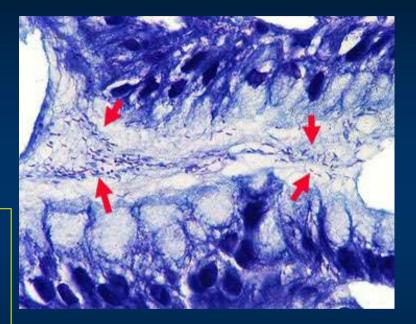
Diagnosis of H. pylori infection: Principle of RUT


RUT: Sol vs. gel

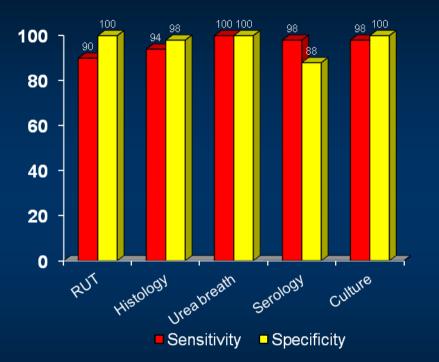
Observation: LRUT 4-h, CRUT 24-h



Observation: 4-h for both LRUT & CRUT


Ghoshal et al. Indian J Gastroenterol 1999; 18: 183

Urea breath test



Histopathology & other tests

- Gram's stain: Gram's negative bacilli
- Giemsa stain
- Genta stain
- Methylene blue
- Fecal antigen test
- *H. pylori* culture
- *H. pylori* serology

Sensitivity and specificity of different tests

Sensitivity of RUT reduces if

- Patients present with acute GI bleed
- Prior use of PPI

Scand J Gastro 1996; 31 (suppl 215): 57-62

Stool antigen assay (HpSA)

capture reagent Monoclonal antibody improves efficacy

HpSA test for pre-treatment diagnosis of *H. pylori* infection

References	Patients (no)	Gold standard	Sensitivity (%)	Specificity (%)
Adult populations				
Vaira et al. ¹¹	501	RUT. H. C	94	92
Ohkura et al. ¹²	309	RUT, H. UBT	94	96
Trevisani et al. ¹³	300	RUT. H	97	90
Forné et al. ¹⁴	188	RUT, H. UBT	89	78
Trevisani et al.15	146	RUT, H	94	90
Vakil et al. ¹⁶	108	RUT	86	91
Monteiro et al.17	104	RUT. H. C	89	94
Lehman et al. ¹⁸	102	RUT. H. C	96	93
Makristathis et al. ¹⁹	100	UBT, S	89	95
Braden et al.20	90	UBT	92	97
Fanti et al. ²¹	84	H, C	98	96
Puspök et al.22	72	Н	80	98
Agha-Amiri et al.23	54	RUT. H. UBT. S	96	92
Chang et al.24	62	H. C. UBT. RUT	94	89
Child populations				
Kato et al.27	264	UBT	96	97
Oderda et al.28	203	RUT. H	100	93
Braden et al.29	162	UBT	92	99
Konstantopoulos et al. ³⁰	145	RUT. H. C	89	94
Shepherd et al.31	119	UBT	88	82
Gosciniak et al. ¹²	107	RUT. C	89	96
van Doorn et al.33	106	H, C	100	92
Makristathis et al. ³⁴	78	UBT, S	94	97
Rothenbacher et al.35	69	UBT	85	98
Husson et al. ³⁶	58	II. C	87	97

	References
	Adult populations Vaira et al. ³⁸
	Ishihara et al. ³⁹ Manes et al. ⁴⁰
Polyclonal anti- <i>H. pylori</i> antibody as a	Braden et al. ²⁰ Makristathis et al. ¹⁹ Arents et al. ⁴¹ Leodolter et al. ⁴² Vaira et al. ⁴³

HpSA test for post-treatment diagnosis of H. pylori infection

References	Patients (no)	Time (weeks)	Gold standard	Sensitivity (%)	Specif (%)	icity
Adult populations						
Vaira et al. ³⁸	235	4	UBT	96	95	
	162	4	RUT, H, C	93	95	
Ishihara et al. ³⁹	112	4	UBT	90	98	
Manes et al.40	106	4	UBT	87	95	
Braden et al.20	115	4	UBT	91	95	
Makristathis et al. ¹⁹	55	4	H,C	86	68	
Arents et al.41	65	4	UBT	40	95	
Leodolter et al.42	30	4-6	UBT	93	94	
Vaira et al.43	84	5	RUT. H. C	94	97	
Odaka et al.44	43	2	H.C.UBT	89	91	
		6		89	97	
Trevisani et al.15	116	8	RUT, H. UBT	93	82	
Forné et al.14	142	6	UBT	70	82	
Costa et al.45	155	4	RUT. UBT. H	92	82	
	153	13		96	97	
Child populations						
Gosciniak et al. 32	62	4-6	RUT. C	89	96	
Oderda et al. ⁴⁶	60	2	UBT	100	100	
		6		100	94	14
Makristathis et al. 14	40	4	UBT	100	93	14
		8		100	100	14
Husson et al. ³⁶	11	5-6	H. C	67	100	-

C, culture: H. histology; RUT, rapid urease test; UBT, urea breath test.

Kabir S. Aliment Pharmacol Ther 2003; 17: 1345–1354

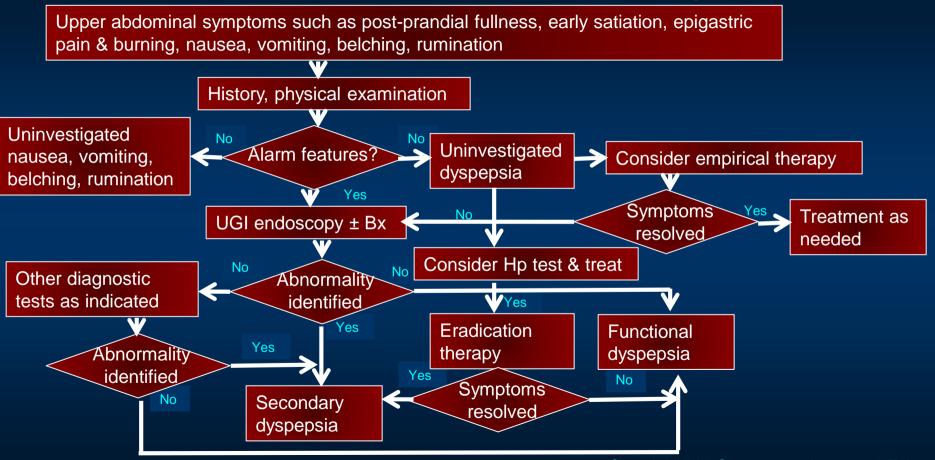
Salivary and urinary antigen tests

Salivary antigen test for H. pylori infection

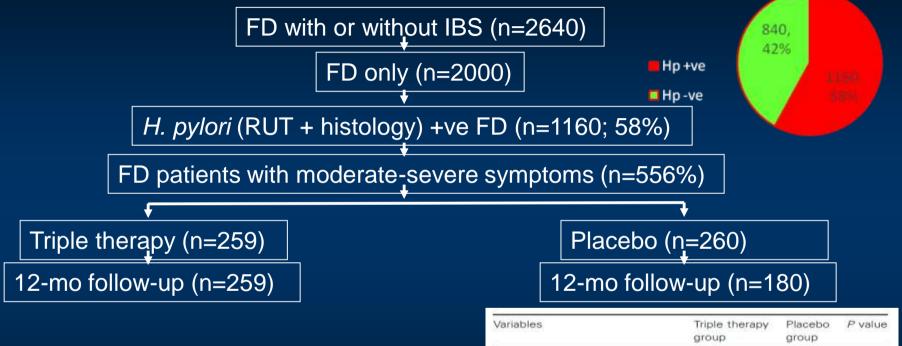
		Salivary ELISA		
References	Patients (no)	Sensitivity (%)	Specificity (%)	
Patel et al.77	119	85	85	
Luzza <i>et al.</i> ⁷⁸	213	81	73	
Luzza et al.85	152	82	71	
Christie et al.86	86	88	71	
Simor et al. ⁸⁷	195	81	75	
Fallone et al. ⁸⁸	106	66	74	
Reilly et al.89	303	84	70	
Loeb et al.90	157	86	58	
Marshall et al. ^{79.*}	81	94	85	

n.d., not determined; * Oral fluid used.

Urinary enzyme immunoassays for *H. pylori* infection

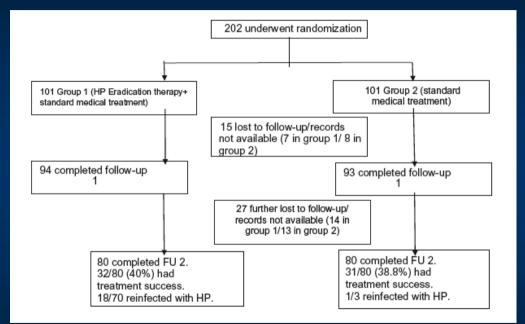

Reference	Patients (no)	Gold standard	Sensitivity (%)	Specificity (%)
Urinary ELISA				
Alemohammad et al.63	306	H, RUT, C	96	90
Kato et al. ⁶⁴	238	H. RUT. C	96	79
Miwa et al. ⁶⁵	132	UBT	86	91
Katsuragi et al. ⁶⁶	119	UBT	99	100
Adachi et al. ⁶⁷	100	UBT	91	95
Kato et al.68	816^{*}	S	85	95
Immunochromatograp	ıy			
Miwa et al. ⁶⁹	155	UBT	96	88
Wong et al. ⁷⁰	123	H, RUT	97	95
Yamamoto et al.71	117	H. S	92	93
Graham & Reddy ⁷²	104	UBT	95	97
Wu et al. ⁷³	93	H, RUT, C, UBT	95	90
Fujisawa <i>et al.</i> ⁷⁴	21	H, RUT, C	100	67

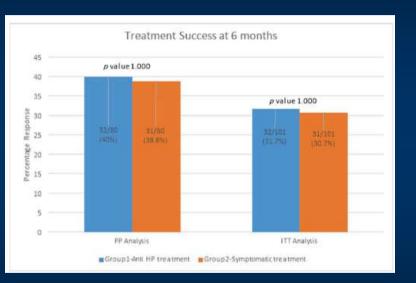
Kabir S. Aliment Pharmacol Ther 2003; 17: 1345–1354


Indications for treatment of *H. pylori* infection

- Duodenal ulcer (number needed to treat [NNT] to prevent recurrence 2)
- Gastric ulcer (NNT to prevent recurrence 3)
- Low-grade MALT lymphoma (high-grade requires additional chemotherapy)
- After gastric cancer resection (to prevent metachronous cancer)
- Family history of gastric cancer
- In high-risk individuals before long-term NSAID and low-dose aspirin
- Univestigated dyspepsia?

Functional dyspepsia: Rome IV algorithm

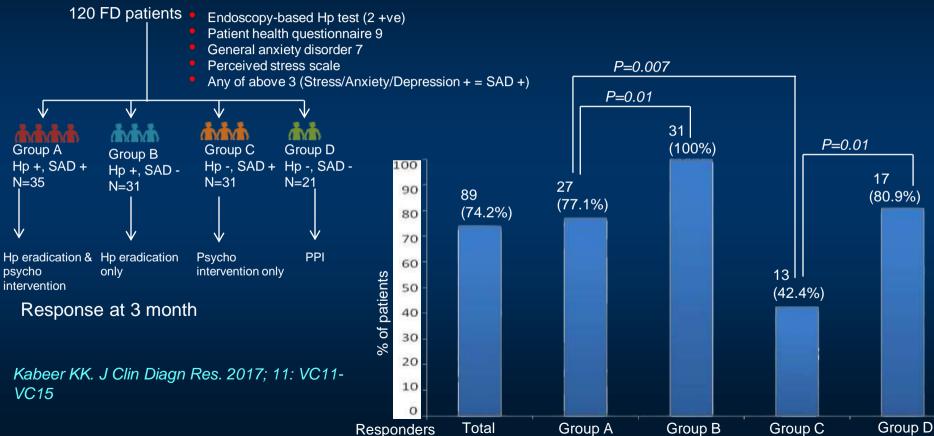

H. Pylori eradication in FD: A randomized controlled trial



Sodhi JS. J Gastroenterol Hepatol 2013: 28; 808-13

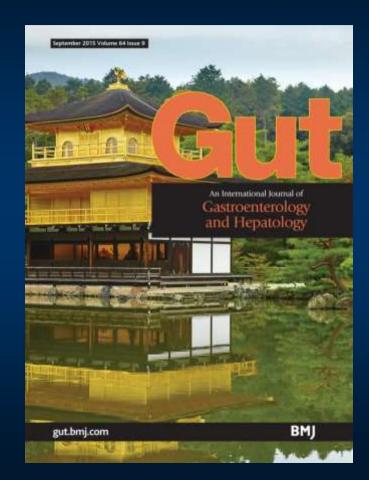
Resolution of symptoms* 4 weeks (%) 60.6 52.3 0.38 43.7 36.9 1 year (%) 0.13 Eradication of Helicobacter pylori 5.0 0.001 6 weeks (%) 69.9 1 year (%) 66.6 6.6 0.001 Healing of gastritis 6 weeks (%) 36.3 5 0.001 1 year (%) 75.9 6.2 0.001

H. Pylori eradication in FD: A randomized controlled trial



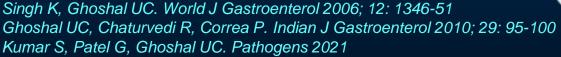
Padole P. Indian J Gastroenterol 2021: 40; 492-501

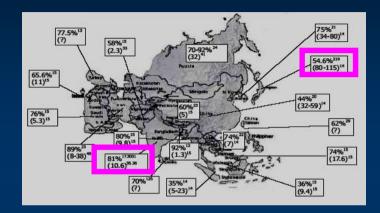
H. Pylori eradication in FD: Another Indian study



Kyoto consensus

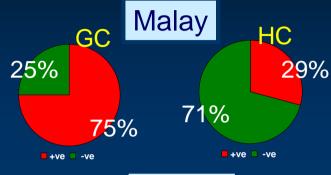
Jan 30 - Feb 1, 2014, Kyoto, Japan


The Kyoto Global Consensus Meeting on *H. pylori* gastritis was recently held Jan 30 – Feb 1, 2014. The meeting was organized by the Japanese Society of Gastroenterology (JSGE) in conjunction with the European Helicobacter Study Group (EHSG) and was endorsed by the Asian Pacific Association of Gastroenterology (APAGE), Healthy Stomach Initiative (HIS) and the Japanese Society of Helicobacter Research (JSHR). Conference Presidents, Dr. Peter Malfertheiner and Dr. Kentaro Sugano professionally and deliberately conducted the entire conference. There were 13 voting members from North America, South America, Europe, 9 from the Asia-Pacific region, and 24 from Japan.



more inside

What other factor influenced Kyoto consensus? Frequency of gastric cancer



Ethnicity & *H. Pylori* as Risk Factors for GC: Indians vs. Malay vs. Chinese

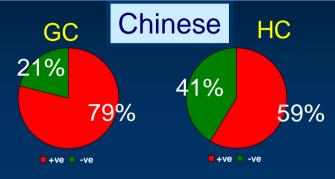
GC

+ve -ve

N = 17

82%

18%

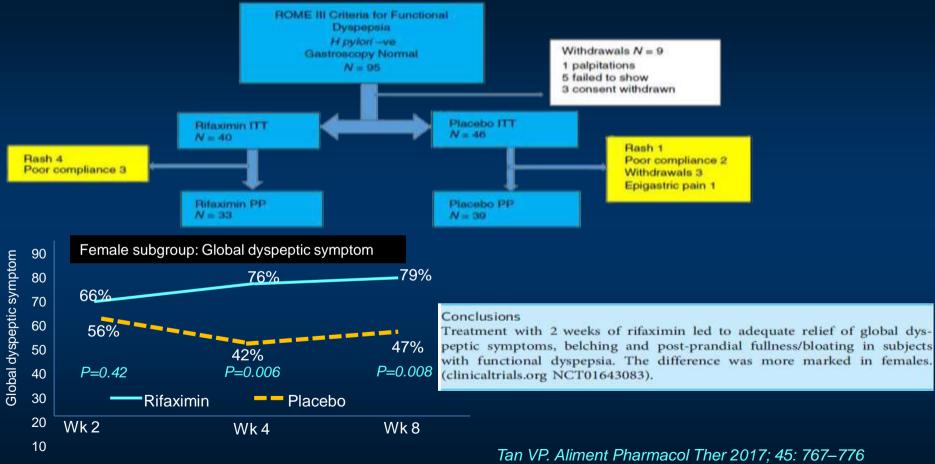

HC

52%

48%

🗕 +ve 📃 -ve

N = 68


N = 66

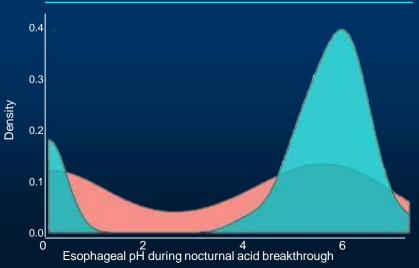
H. Pylori positive Indians develop GC less frequently compared to Chinese & Malays

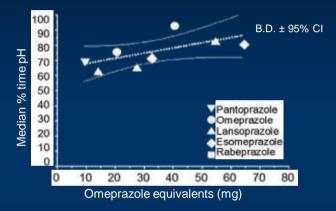
Goh K-L et al . Am J Gastroenterol, 2007

Rifaximin in functional dyspepsia

0

P-A-C P-M-C O-B-M-T O-B-F-T P-A-R

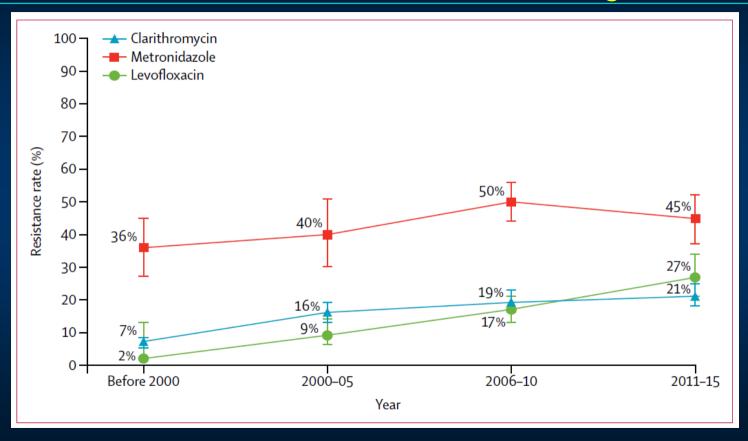

P: PPI
C: clarithromycin
O: ofloxacin
T: tetracycline
R: rifabutin


A: amoxycillinM: metronidazoleB: bismuth saltF: furazolidone

GCNA 2000; 29 (4): 759-773

- Which proton pump inhibitor? Newer PPIs and those not affected by CYP2C-19 polymorphism (e.g. rabeprazole, esomeprazole, vonoprazan) have greater efficacy
- Higher dose, greater efficacy

PPI + amoxycillin	Eradication rates
Omeprazole 20 mg BD	20%
Omeprazole 40 mg BD	40%
Esomeprazole 40 mg BD	60%
Vonoprazan 20 mg BD	90%



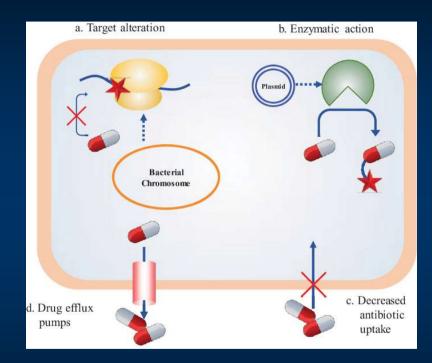
Graham DY. Helicobacter 2019 Feb;24(1):e12554

Proton pump inhibitors Dexlansoprazole Omeprazole

Ghoshal UC. Indian J Gastroenterol 2022; 41: 405-14

Primary clarithromycin, metronidazole, and levofloxacin resistance in the Asia-Pacific region

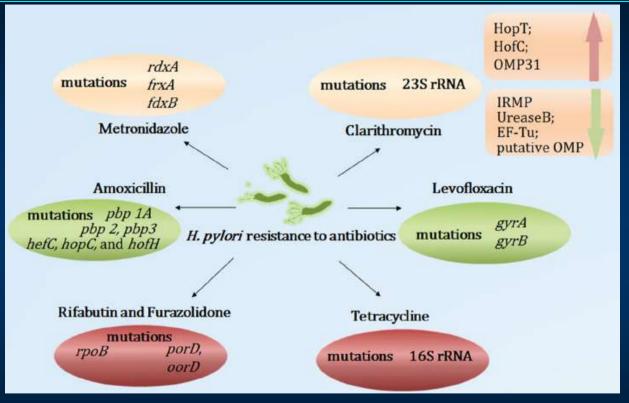
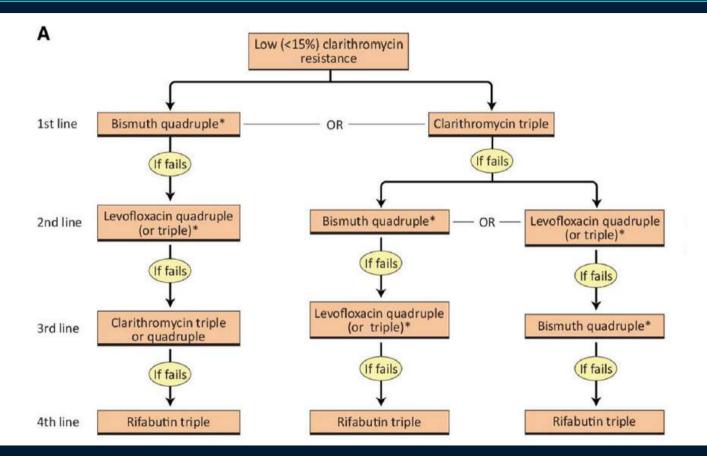
Kuo YT. Lancet Gastroenterol Hepatol 2017

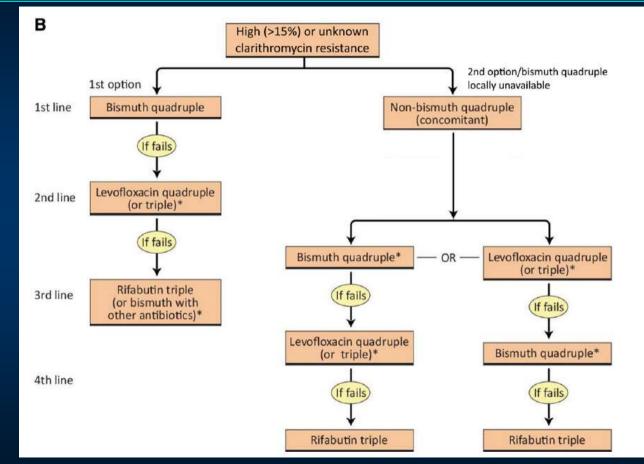

Mechanisms of antibiotic resistance in *H. pylori*

Coccoid transformation

Biofilm formation

Genetic mechanisms of antibiotic resistance in H. pylori


FIGURE 2 | Summary of mutations and novel mechanisms involved in *H. pylori* antibiotic resistance. OMP, outer membrane protein; IRMP, iron-regulated membrane protein; EF-Tu, elongation factor thermo unstable.

Zhu YHY. Front. Cell. Infect. Microbiol. 7:168

Maastricht VI/Florence consensus

Maastricht VI/Florence consensus

Malfertheiner P. Gut 2022;71:1724-1762

Short & long treatment & triple vs. quadruple therapies

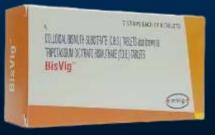
- Longer duration of triple therapy is superior to shorter duration therapy (1 week therapy 48% eradication, 2 week: 80%; Chaudhary A. Helicobacter 2004; 9: 124-29)
- Quadruple therapy (PPI, bismuth, metronidazole, tetracycline, eradication in 73%) does not offer any advantage over the standard triple therapy (PPI, amoxycillin, clarithromycin, eradication in 83%; p=ns). Pai G. Indian J Gastroenterol 2003; 22: 85-87
- Standard triple therapy (pantoprazole, clarithromycin, amoxycillin) was less effective (62%) than sequential therapy (pantoprazole 40 mg plus amoxicillin 1 g twice daily for 5 days followed by 40 mg pantoprazole, 500 mg clarithromycin, and 500 mg tinidazole each administered twice daily for 5 days; 76%). Javid G. Indian J Gastroenterol 2013; 32: 190-94

APAC consensus recommendations: Use of probiotic with anti-Hp therapy reduces side effect & improve eradication

Indications	Recommendation	Level of agreement on Likert scale	Consensus
	Concomitant probiotic administration reduces side effects related to antibiotic therapy in adults undergoing eradication therapy for <i>H. pylori</i> .	4.2	Agreed
Helicobacter	A) Certain strains are more effective than others	4.4	
<i>pylori</i> infection	Concomitant probiotic administration increases eradication rates in adults undergoing eradication therapy for <i>H. pylori</i> .	3	Agreed
Cisto Gistroenterology	A) Certain strains are more effective than others	3,2	

Ghoshal UC et. al. J Gastroenterol Hepatol. 2017. doi: 10.1111/jgh.13840

Regimens


Regimens	Drugs		Efficacy
	1 st week	2 nd week	
Standard triple therapy	P + A + C	P + A + C	76%
Sequential therapy	P + A	P + C + M	83%
Concomitant therapy	P + A + C + M	P + A + C + M	85%
Hybrid therapy	P + A	P + A + C + M	81%
Bismuth quadruple therapy	P + M + T + B	P + M + T + B	87%
P: PPI C: clarithromycin O: ofloxacin T: tetracycline	A: amoxicillin M: metronidazole B: bismuth salt F: furazolidone	R: rifabutin	

A few words about bismuth salt for H. pylori

- Again available in India
- Dose 420 mg Q.I.D.
- Inhibits *H. pylori* urease, catalase, and lipase
- Inhibits ability of *H. pylori* to adhere to epithelial cells
- Overcomes clarithromycin and levofloxacin resistance
- No relationship with metronidazole resistance

Side effect	BLAC (%)
Darkening of stool	32.9
Metallic taste	18.5
Nausea	15.4
Diarrhea	11.3
Itching	8.2
Headache	8.2
Abdominal pain	6.1
Vomiting	6.1
Skin rash	6.1
Constipation	5.1

BLAC, bismuth subcitrate, lansoprazole, amoxicillin, clarithromycin.

